\(\int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx\) [156]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 112 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=-\frac {2 (-1)^{3/4} \sqrt {a} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

-2*(-1)^(3/4)*B*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d-(1+I)*(I*A+B)*a
rctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {3682, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=-\frac {(1+i) \sqrt {a} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 (-1)^{3/4} \sqrt {a} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[In]

Int[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(-2*(-1)^(3/4)*Sqrt[a]*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - ((1 +
 I)*Sqrt[a]*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\left ((-A+i B) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\right )+\frac {(i B) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{a} \\ & = \frac {(i a B) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (2 a^2 (i A+B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2 i a B) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2 i a B) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {2 (-1)^{3/4} \sqrt {a} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.11 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.26 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\frac {a \left (\frac {\sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {2 \sqrt [4]{-1} B \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[In]

Integrate[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(a*((Sqrt[2]*(A - I*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]]
)/Sqrt[I*a*Tan[c + d*x]] + (2*(-1)^(1/4)*B*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + d*x]])/Sq
rt[a + I*a*Tan[c + d*x]]))/d

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 468 vs. \(2 (89 ) = 178\).

Time = 0.14 (sec) , antiderivative size = 469, normalized size of antiderivative = 4.19

method result size
parts \(-\frac {i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}}-\frac {B \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-\sqrt {i a}\, \sqrt {2}\, \tan \left (d x +c \right ) \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )+2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \tan \left (d x +c \right )+2 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right )\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )}\) \(469\)
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \left (i A \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right )-2 i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, \tan \left (d x +c \right )-i B \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )+B \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right )+A \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-2 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(498\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \left (i A \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right )-2 i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, \tan \left (d x +c \right )-i B \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )+B \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right )+A \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-2 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(498\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*I*A/d*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d
*x+c)+I))*a*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)-1/2
*B/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(I*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))-(I*a)^(1/2)*2^(1/2)*tan(d*x+c)*ln((2*2^(1/2)*
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))+2*I*(-I*a)^(1/2)*ln(1/2
*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)+2*(-I*a)^(1/
2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2)))/(a*tan(d*x+c)
*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 539 vs. \(2 (84) = 168\).

Time = 0.27 (sec) , antiderivative size = 539, normalized size of antiderivative = 4.81 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\frac {1}{2} \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (i \, \sqrt {2} d \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \frac {1}{2} \, \sqrt {2} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (-i \, \sqrt {2} d \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \frac {1}{2} \, \sqrt {\frac {4 i \, B^{2} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (B e^{\left (2 i \, d x + 2 i \, c\right )} + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {4 i \, B^{2} a}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{B}\right ) + \frac {1}{2} \, \sqrt {\frac {4 i \, B^{2} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (B e^{\left (2 i \, d x + 2 i \, c\right )} + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {4 i \, B^{2} a}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{B}\right ) \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*log((I*sqrt(2)*d*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*e^(I*d*
x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 1/2*sqrt(2)*sqrt(-(I*A^2 + 2*A*B
- I*B^2)*a/d^2)*log((-I*sqrt(2)*d*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^
(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x +
 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 1/2*sqrt(4*I*B^2*a/d^2)*log((sqrt(2)*(B*e^(2*I*d*x + 2*I*c) + B)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(4*I*B^
2*a/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/B) + 1/2*sqrt(4*I*B^2*a/d^2)*log((sqrt(2)*(B*e^(2*I*d*x + 2*I*c)
+ B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - I*sqrt(4
*I*B^2*a/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/B)

Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )}{\sqrt {\tan {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))/sqrt(tan(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\tan \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)/sqrt(tan(d*x + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -86, a substitution variable should perhaps be pu
rged.Warnin

Mupad [B] (verification not implemented)

Time = 13.42 (sec) , antiderivative size = 372, normalized size of antiderivative = 3.32 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx=\frac {B\,\sqrt {a}\,\ln \left (\frac {\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (2-2{}\mathrm {i}\right )}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}-\frac {a\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}+1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{d}+\frac {\sqrt {2}\,B\,\sqrt {a}\,\ln \left (\sqrt {2}\,\left (1-\mathrm {i}\right )+\frac {2\,\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}\right )\,\left (1+1{}\mathrm {i}\right )}{d}-\frac {\sqrt {\frac {1}{2}{}\mathrm {i}}\,B\,\sqrt {a}\,\ln \left (-\frac {a\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}+\frac {2\,{\left (-1\right )}^{3/4}\,\sqrt {2}\,\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}+1{}\mathrm {i}\right )}{d}-\frac {\sqrt {4{}\mathrm {i}}\,B\,\sqrt {a}\,\ln \left ({\left (-1\right )}^{3/4}+\frac {\sqrt {a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}}\right )}{d}+\frac {2\,\sqrt {\frac {1}{2}{}\mathrm {i}}\,A\,\sqrt {-a}\,\mathrm {atanh}\left (\frac {2\,\sqrt {\frac {1}{2}{}\mathrm {i}}\,\sqrt {-a}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}{a\,\mathrm {tan}\left (c+d\,x\right )-a\,1{}\mathrm {i}+\sqrt {a}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}\right )}{d} \]

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/tan(c + d*x)^(1/2),x)

[Out]

(B*a^(1/2)*log((a^(1/2)*tan(c + d*x)^(1/2)*(2 - 2i))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)) - (a*tan(c + d*
x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + 1i)*(1/2 + 1i/2))/d + (2^(1/2)*B*a^(1/2)*log(2^(1/2)*(1 - 1i
) + (2*a^(1/2)*tan(c + d*x)^(1/2))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)))*(1 + 1i))/d - ((1i/2)^(1/2)*B*a^
(1/2)*log((2*(-1)^(3/4)*2^(1/2)*a^(1/2)*tan(c + d*x)^(1/2))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)) - (a*tan
(c + d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + 1i))/d - (4i^(1/2)*B*a^(1/2)*log((-1)^(3/4) + (a^(1/2
)*tan(c + d*x)^(1/2))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))))/d + (2*(1i/2)^(1/2)*A*(-a)^(1/2)*atanh((2*(1
i/2)^(1/2)*(-a)^(1/2)*tan(c + d*x)^(1/2)*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2)))/(a*tan(c + d*x) - a*1i + a
^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)*1i)))/d